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Abstract

The recent COVID-19 outbreak has affected most countries, and motivated global efforts
for developing robots to help the frontline medical staff. Human-to-robot handover is a key ca-
pability of service robots and human-robot interaction. Recent work takes advantage of existing
hand and object segmentation, and pose estimation algorithms to generate grasps. End-to-end
grasping directly from sensor data without object models has made tremendous progress in lo-
gistic tasks, but has not been used for human-to-robot handover. However, both approaches
aim for grasping without inducing harm, but neither consider which types of grasps may be
intrusive to human users. We present our end-to-end 6DoF grasp choice for human-to-robot
handover. We first leverage existing end-to-end grasping for the network backbone, and then
finetune for preferred grasps using deep reinforcement learning. Comprehensive evaluations
are carried out against various baselines using multi-stage hand and object prediction and sub-
sequent planning. We show that the proposed approach was more robust to partial occlusions,
and executed human preferred 6DoF grasps without hard-coding the correspondence of hand
grasp classification. A dataset of end-to-end grasping and trajectories for human-to-robot han-
dover and all pretrained models are available at https://arg-nctu.github.io/projects/

socially-aware-handover.html.
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Chapter 1

Introduction

1.1 Motivation

Although advances in medicine have enabled people to live longer, global work and travel
have facilitated the spread of infectious diseases, including SARS-Cov-2. More than 212 million
people have been infected worldwide, and more than 4.44 million have died from COVID-19
as of August 24, 2021. Robotics researchers have played an important role in managing the
pandemic [6, 7], and substantial effort has been made to adapt preexisting devices to the new
challenges brought about by the pandemic. Numerous useful solutions have been developed.
In particular, the lack of time for designing and developing medical robots in response to the
pandemic has prompted experts to consider methods of responding to the infectious disease
crisis by analyzing the challenges and opportunities for advancements in these technologies [8].

Hospital cluster infections are more dangerous than community cluster infections are. There-
fore, researchers in various communities have rapidly mobilized to reduce hospital infection risk,
and service robotics is a pioneering method in this field [6]. Research reports [9] have revealed
that among the top 10 industrial projects funded by the Digital Innovation Center for Medical
Robotics (DIH-HERO) project in Europe, robots providing disinfection and logistical services
have the greatest short-term impact. Remote-controlled robots operated by humans can provide
services to patients. For example, nurses can use these robots and their mobile manipulators for
medicine delivery and pairing or for the disinfection of patient areas. Autonomous robots are
critical for maintaining separation between medical staff and isolated patients. Wheeled mobile
robots can be used to disinfect contaminated places in hospitals without the need for any contact
between the patient and medical staff [10, 11, 12].

Many non-care core hospital tasks such as delivering medicine, collecting bedsheets, and

disinfecting the environment can be performed by autonomously moving Robotic Nursing As-
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Figure 1.1: Our approach allows human-to-robot handovers using end-to-end grasp choice,
learning-based algorithms. When the program is executed, the agent will generate an action.
Through the end-to-end approach we proposed, there is a 93.5% probability that the target ob-
ject can be grasped. In addition, we also incorporated reinforcement learning rewards, so that
the agent can learn human grasping preferences to make the robot more anthropomorphic.

sistants (RoNAs)[13]. The use of robots instead of medical personnel to enter isolation area to
perform tasks, in addition to reducing unnecessary contact with patients, can also reduce the risk
of infection caused by contact with objects that patients have used.

Thus, in this study, our goal was to formulate an efficient and customizable method for
meeting medical needs by enabling a robot to work with a human (human-to-robot handover)
and to apply this method to a hospital medicine delivery robot with a manipulator. A RGB-D
camera was used to accurately predict the gripper position between the object and the human
fingers, and the manipulator then avoided the fingers when attempting to grasp a target object,

such as a medicine cup, medicine bottle, or medicine box.



1.1.1 Human-to-Robot Handover

Human-robot collaboration in handover is mainly divided into robot-to-human (R2H) han-
dovers and human-to-robot (H2R) handovers. In previous researches, most of them focused on
robot-to-human (R2H) handover. Human can actively track the position of the robot arm and
take the object. However, human-to-robot (H2R) handovers have tried to address challenges in
enabling seamless autonomous handovers, from human and object perception to motion con-
trol during handovers. In the most recent research, only two papers [14, 5] had more than ten
objects to overcome the diversity and uncertainty of the environment. Therefore, the current
research and development aims to allow humans to achieve human-robot collaboration in the
most natural and safe way.

Human-to-robot handovers, involving the transfer of an object from a human giver to a robot
receiver, are fundamental capabilities that allow for service robots in our daily lives. There
has been increasing interest in studying human experiences [15, 16], predicting human hand
poses or object affordance (represents how the object is grasped to complete the handover task)
for grasping selections [17, 14], and expanding the types of handovers for a wider range of
objects [14, 5] in order to improve human-to-robot handover.

Grasp choice may be influenced by several constraints, such as object shape, task require-
ments, gripper types, and social convention [16]. By observing and analyzing the human grasp,
the robot grasp could be adapted accordingly. Therefore, previous works tend to utilize human
grasp classification [17] or hand pose estimation, in order to generate a corresponding grasp
pose.

Several deep learning-based techniques have been applied in handover pipelines, including
object detection [18], and object pose estimation [19].In general, human-to-robot handovers are

successful as long as the objects and hands are accurately tracked.

1.1.2 End-to-End Grasping

Recent advances in end-to-end grasping prediction have shown promising progress. [20]

Used a ResNet-101 backbone end-to-end network to generate the affordance map for either



suction or two-finger parallel grippers in heavily cluttered scenarios during the Amazon Robotics
Competition. The series of DexNet models [21, 22, 23, 24] used large amounts of simulation-
only datasets with thousands of objects to train the end-to-end CNN networks. Although the
above research was successful in overcoming occlusions in cluttered scenarios, this has not yet
been used to tackle input images involving objects that are held in human hands, nor has their

been consideration of what grasp may be intrusive for users during human-to-robot handovers.

1.2 Challenges

Figure 1.2: Context comparison between logistics grasp and handover grasp.

Compared with other existing end-to-end grasping networks [25, 4, 20, 24], human-to-robot
handovers requires the following adaptations.

Background: In previous works, the objects are placed in tote or on tables and therefore
the backgrounds are often relatively plain. It has been shown that background may largely
affect deep network performance, such as replacing the background by a checkerboard [26]. [5]
modified the grasp prediction network GG-CNN [4] by adding a planar surface background.
(Fig. 1.3)

Occlusion: Given that the target object is held by a human hand, there are a certain number of
occlusions that may affect the success rate of segmentation and pose estimation of the object and
the hand. In prior end-to-end grasping work, grasp selection networks are usually programmed
to pick the objects from the top, and thus are not occluded by other objects in cluttered scenes.

Each object is then removed from the tote one by one. In this context, the grasping behavior



only has to deal with background clutter, but not occlusion challenges. In contrast, depending
on how the object is held in the human’ s hand, occlusion may be higher and thus existing
segmentation and pose estimation algorithms may fail. Therefore, although there are only two
objects (a single target object and the human hand) in the input images, the occlusion challenge
remains. (Fig. 1.4)

Planar vs. 6 DoF Grasping: In prior research, end-to-end grasping is usually formulated
as planar grasping [27], whereby a grasping point (x, y) and an angle 6 of a two-finger gripper
are generated from an input image. However, human-to-robot handovers involve grasping in
3D-space, meaning that there are several grasping and trajectory solutions.

Grasp Choice: Human grasp types are known to associate with different robot grasp during
handover [16]. Previous work [17] needs to classify human grasp so that the hard-coded robot
grasp could be carried out. Learning for such associations in a data-driven manner is not yet

studied in previous end-to-end grasping work.

1.3 Contributions

In this thesis, we propose to address the problem of grasp poses in human-to-robot handovers

through an end-to-end network. The contributions of our work are as follows:

* An end-to-end grasping approach of affordance prediction for human-to-robot han-
dovers. Building upon the work in [20], we collected and manually labelled a handover
dataset, and trained a model taking RGB-D images as inputs and generating an affordance
map for grasping. In contrast to existing methods, this approach bypasses the separate
stages of predicting the pose of the hand and the object. This is especially useful when
more than 40% of the target object is occluded, and we systematically analyzed the grasp-

ing success rate across several baseline methods.

* A data-driven approach for learning grasp choice without hand pose nor hard-coded
human-robot grasp associations. Given that a grasp choice is affected by object, task,
gripper, or social convention constraints, we learn the implicit associations directly from

image inputs. We trained grasping behaviors based on human feedback as rewards through



deep RL.

* An open dataset for human-to-robot handover. The data and pretrained weights of
the above end-to-end grasping follow widely used end-to-end grasping in [28]. We also

provide the grasp choice of human annotations for deep RL. Both are available open access

for reproducing this study.

Figure 1.3: Background will affect predict results. (Predict by DOPE.)



Figure 1.4: Handover occlusion will affect predict results. (The occlusion threshold is 44.5%.)



Chapter 2

Related Work

2.1 Hand and Object Pose Estimation

Recent state-of-the-art hand and object pose estimation methods have been developed using
a variety of real or simulated datasets. MANO (hand Model with Articulated and Non-rigid
defOrmations) [29] was trained on 1,000 high-resolution 3D scans of hands. DOPE (Deep Ob-
ject Pose Estimation) [30] took advantage of synthetic data for training deep neural networks for
Y CB household objects. This demonstrated that the combined domain randomized and photore-
alistic synthetic data closed the reality gap in the context of 6-DoF pose estimation of known ob-
jects from a single RGB image. Moreover, ObMan [2] leveraged a large-scale synthetic dataset
for joint reconstructions of hands and objects. With manipulation constraints, a model exploited
plausible hand-object constellations. We will use these prior methods as our baselines, and sys-

tematically evaluate scenarios that include objects with high rates of occlusions.

2.2 Handovers by Estimating Hand and Object Poses

Prior research on human-to-robot handovers have used establishing hand and object de-
tection and pose estimation algorithms. Yang et al. [17] trained a deep neural network using
PointNet++ [19] to classify point clouds around human hands into one of seven pre-defined
grasping categories. A subsequent motion plan was then carried out to complete the handovers.
Consequently, [14] further tackled the challenges of unseen objects. Closed-loop designs re-
fined the tracking of segmented hands and objects over time. A grasp selection model based
on the 6-DoF GraspNet [31] was then performed. Similarly, Rosenberger and colleagues [5]
proposed a method for grasping generic objects, using an YOLO V3 object detector [18] trained
on 80 object categories from the COCO [32] dataset. They simultaneously predicted hand and

body segmentation, which were then excluded from a modified GG-CNN [4] model to generate



safe grasps. Our work is different from this prior work, incorporating a data-driven end-to-end

grasping model that does not require hand and object detection and pose estimation algorithms.

2.3 End-to-end Grasping

End-to-end grasping has attracted much attention. [27] used a real robot to collect a dataset
of 50k grasps in a self-supervised fashion, and trained a deep neural network classifier to predict
grasp success. [33] further collected a grasping dataset with more variability by using images
from individual’ s homes instead of only in lab settings using a low cost robotic platform.
DexNet [21, 22, 23, 24] is a series of end-to-end approaches that used a 6.7 million dataset
which was generated entirely through simulation. The proposed GQ-CNN method evaluated the
quality of each grasp configuration from the previous step [0,1], and outputs the highest quality
grasp configuration. In contrast,[20] used human annotations for suction grasping and parallel
grasping. They used a ResNet-101 backbone network to implement an end-to-end affordance
prediction method, without any pre-processing of object segmentation and classification.

Among these methods, self-supervised learning may not be suitable for handovers which
include humans. Although simulation offers an abundance of data, it has been known to fall
short in certain application setups due to the domain gap between synthetic and real data. How
to incorporate human knowledge into the grasping algorithms remains an open question. In our
work, the affordance prediction method [20] for human-to-robot handovers was adapted using

human annotations.



Chapter 3

Approach

3.1 Problem Formulation

3.1.1 End-to-end Grasping using Affordance Prediction

We follow the affordance prediction [20] formulated as planar grasping. During pre-processing
we filter backgrounds that have a depth greater than 75 cm. Given RGB-D images (/rgp and
depth Ip.,) of the scene, a fully convolutional network is trained to infer the affordances
(L Af fordance) across a dense pixel-wise sampling of end-effector orientations and locations. Each
pixel correlates to a different position by which to execute the grasping. By rotating the same
input and running inference for NV times, where N was set to 8 for 0, 30, 45, 60, 90, 120, 135,
and 150 degrees, the largest area among the 224 x 224 x N affordance map is selected as the
grasp by a two-finger parallel gripper. We also map the grasp pose (° X “¢resr) from the cam-
era frame to a world frame (V' P% =W X ¢ PP) We then use Movelt[34], open-loop motion

planning in real-time, to execute the grasping.

3.1.2 Learning Grasp Choice using Deep RL

Through pixel-wise affordance prediction, we can predict the planar graspable positions and
gripper angles. However, grasp choice may be influenced by object or human givers’ different
preferences when interacting with the robot. We modify the training process to include the
human in the loop through deep reinforcement learning.

We formulate our task as a standard Markov Decision Process (MDP), which is defined
as M = {S, A, R, P,v}. We reuse the pre-trained weight obtained in our affordance predic-
tion method, which share the RGB and depth image inputs as the state S. The action A €

R224X224XNXM iq 3 discrete space that maps to the 224 x 224 grasping position, N as different

10



orientations of the end effector, and M as the number of 6DoF grasping. R is the reward signal,
and P is the transition function to the next state, p(s;11|s, a;), finally the ~ is a discount factor
for future value estimation. The objective is to find a state-action value estimator using rewards
as a guide. Here we transform our value estimator into N x M affordance maps, and the largest

area is selected for the 6DoF grasping task.

3.2 Pixel-Wise Affordance Prediction

3.2.1 End-to-end Adaptation Challenges

Table 3.1: Summary of Grasping Success Rates for the Experiments by Fine-Tuning the Method

Method/Object Water Cup | Small Cup | Medicine Bottle Medicine Box Success Rate | A Plan Failed | Touch Fingers
Base Grasping 75% 80% 80% 75% 77.5% 22.5% 0%

Hand Grasping 30% 5% 25% 5% 16.25% -61.25% | 46.25% 37.5%
Improve Background || 55% 50% 55% 55% 53.75% -23.75% | 26.25% 20%

Improve Annotation 65% 65% 75% 65% 67.5% -10% 21.25% 11.25%
HERoS 95% 95% 85% 100% 93.75% +16.25% | 6.25% 0%

To our knowledge, the end-to-end concept, which performed excellently in logistical grasp-
ing, has not been used for handovers. We thus fine-tuned the end-to-end concept to adapt it to
handovers, as illustrated in Fig. 3.1 and Table 3.1. The difference between the two scenarios
was that in the logistics grasping scenario, the background was smooth and consistent and there
was no need to avoid human hands. In the handover scenario, only one object was grasped at a

time, and objects would thus not be stacked. However, human fingers may occlude the object.

Base Grasping

We referred to the MIT—Princeton [20] end-to-end architecture that ranked first in 2017
Amazon Robotics Challenge. In accordance with their method, we used a dataset of four medical
objects (Section. 3.2.2), annotated the positive grasp points as green, and annotated the negative
grasp points (the part of the object containing human hands) as red to train the end-to-end model.
Due to the configuration of the manipulator, we changed the target angle from horizontal to

vertical. We grasped one object in each trial and grasped each object over 20 trials. The success
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Figure 3.1: Success rate of end-to-end model in handovers. Objects were first grasped in a box.
Due to the consistent background and the lack of human hands, the success rate was 77.5%.
Next, the object was held in a human hand and handover was performed; the success rate was
reduced to 16.25%. After depth processing, the success rate increased to 53.75%. In addition
to depth processing, we tried improving only the annotation method; the success rate increased
to 67.5%. Finally, we propose an approach combining processing depth and the annotation
method; the success rate increased to 93.75%.
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rate was 77.5%. The primary reason for failures was that the manipulator path through the

Moveit path planning was unusual, causing collision with objects during movement.

Hand Grasping

After demonstrating that effective target grasping in the logistical task, we attempted han-
dovers. Objects previously placed in the box were held by human hands, and the experiment
was performed. The success rate decreased from 77.5% to 16.25%. During the experiment,
problems such as collisions with human fingers and depth errors frequently occurred, resulting

in a failure to grasp handheld objects.

Improve Background Grasping

The experimental results revealed that, in both scenarios, background depth values presented
the greatest challenge. Depth information is simple (i.e., flat) for the target in the box but com-
plicated for targets held in human hands, causing noise that interferes with the prediction results.
Therefore, we filtered depths greater than 75 cm (the longest reach of the manipulator) in the
depth image to simulate the box environment and filtered the noise to clarify the target feature.

After a total of 80 grasping trials, the success rate increased from 16.25% to 53.75%.

Improve Annotation Grasping

In the experiment, we observed that the annotated part of the object containing the hand as
a negative grasp point (red) interfered with model learning, and the two layers of the network
output affected each other. Experiments have demonstrated that, using this annotation method,
the model cannot effectively learn that the human hands cannot be grasped; this result had not
been previously verified for logistical grasping. Therefore, we modified the annotation method
to only label grasp points. The background and human hands were not labeled and were regarded

as ungraspable points. The success rate for these experiments increased from 16.25% to 67.5%.
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HEROoS Grasping (Current approach)

We combined the annotation method and background depth processing to propose an ap-
proach (Section. 3.2.3) that is more adapted to handover tasks and with a success rate increased

from 16.25% to 93.75%. The approach was applied to interact with humans in a medical setting.

3.2.2 Pixel-Wise Classification Dataset
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Figure 3.2: Handover Dataset: (1) water cup, (2) small cup, (3) medicine bottle, (4) medicine
box, (5) SPAM, (6) banana, (7) lemon, (8) strawberry, (9) peach, (10) pear, (11) plum, (12)
mustard, (13) sugar. Fruit objects were plastic.

To overcome the lack of sufficient training data for the robot to operate in the ward, we col-
lected a dataset covering four representative objects —a water cup, small medicine cup, medicine
box, and medicine bottle (Fig. 3.3) These objects could represent the delivery of objects of dif-

ferent sizes and shapes in a ward. We also collected 9 additional YCB [35] objects, for total of

13 objects 1368 RGB-D images, for experiment to compare, as shown in Fig. 3.2.
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Collection

We used a D435 RGBD camera recording dataset mounted at the end effector of a ViperX300s
on a Jackal UGV. Data was collected in different scenes and with different light source angles,
and objects were held in various postures with both left and right hands. During the recording
period, humans only took the objects at an angle of 90° horizontal to the ground. This was to
cause the predicted result of the object to only have a grasp area at 90° and to further obtain the

rotation angle of the object in the horizontal plane.

Label

Figure 3.3: Handover Dataset: line annotation example.

We labelled the RGB images using the LabelMe[36] tool. The output size is also a 640 x 480
densely labeled pixel-wise map. Each pixel value of the pixel-wise map was normalized to be-
tween 0 and 1 in the form of a heat map. We followed the dataset in [20] and asked human
annotators to label a line of where a two-finger gripper could grasp the object without touching
the human hand. Similar to the labelling in [20], one object was densely labelled with the gras-
pable positions and angles displayed in green, shown in Fig. 3.3. Each object included around
100 images, resulting in 1,368 RGB-D images; there were 1,368 annotations with 18,868 pos-

sible grasps (green lines).
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3.2.3 Affordance Prediction
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Figure 3.4: Anoverview of the HERo0S framework. We used ResNet-101[1] as the main network
architecture of HER0S. Given RGB-D images rotated eight times as input, the system predicted
eight pixel-wise affordance maps. Then, the largest area of the affordance maps was selected
as the rotation angle of the gripper (orientation). Finally, the affordance was projected to the
original RGB image and combined with depth information for the grasp pose to be obtained.
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To accomplish the handover task, we obtained the 3D position of the grasp point. The grasp
point was defined as the point at which the object could be grasped stably without coming
into contact with the human fingers. By using the labeled dataset, we allowed the model learn
whether each pixel of the RGB-D image was a point that could be grasped.

In this thesis, we used ResNet-101[1] as the main network architecture of HERoS and used
residual networks to solve the degradation of deep networks and reduce the required computa-
tion (Fig. 3.4). Although this dataset was small with respect to what is required to train a deep
network, the use of ResNets pretrained on ImageNet[37] was sufficient to fine-tune our archi-
tecture. The architecture was a dual-stream network. The RGB images (RGB, 3 channels) and
cloned depth images were normalized by subtracting the mean and dividing by the standard de-
viation (DDD, 3 channels) and were input to the ResNet-101 network separately. The depth was
cloned across channels to use ResNet’s pretrained weight ImageNet on 3-channel (RGB) color
images to avoid convergence difficulties in the case of small datasets. Finally, the two ResNet-
101 outputs (RGB and depth) were concatenated, and three additional spatial convolution layers
were used to merge the features. Then, the images were spatially up-sampled bilinearly and soft-
maxed to output two pixel-wise layers (non-grasping layer and graspable layer) to represent the
inferred affordances.

In this case, we used a D435 depth camera to capture 640 x 480 RGB-D images as input;
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the output size was also a 640 x 480 densely labeled pixel-wise map. Each pixel value of the
pixel-wise map was between 0 and 1, and it was displayed as a heat map.

We used cross-entropy as a loss function, a batch size of 10, a fixed learning rate of 10~3, and
a momentum of 0.99 to train HERoS through stochastic gradient descent of momentum. Our
model was trained in PyTorch using an NVIDIA RTX 2080 GPU and an Intel Core 15-9400F
CPU. Training with our dataset took approximately 1 hour.

For application, we used a trained HERo0S network to predict the RGB-D image, generate
an affordance map, and project the RGB-D depth information to obtain the real-world 3D grasp
point position. For the orientation, because the training data included only objects perpendicular
to the horizontal ground (Section. 3.2.2), if the object was in a skewed state during the prediction
process, the grasp region of the affordances map was reduced. The same frame was rotated eight
times (0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°) and the angle with the largest affordance map

area was selected to obtain the orientation of the object in a grasp plane.

3.3 Human-to-Robot Handover Task

Our handover system was divided into three states, on standby, plan grasp pose, and exe-
cute manipulator. In this section, we introduce the operation process of the entire task, how to
transmit messages through the robot operating system (ROS), and how to process and execute

messages after receiving them.

3.3.1 On Standby

In this state, the manipulator does not perform any actions and is stationary on the UGV. The
vehicle is free in this state. The UGV may be a shuttle carrying objects between the wards and
the pharmacy. If the handover task is triggered through the ros service, the manipulator enters

the plan grasp pose state.
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3.3.2 Plan Grasp Pose

The RGB-D camera running at 15 Hz mounted at the end effector captures images (/ra5,
Ipeptr) used by all of the perception modules; the modules run concurrently in real-time. In this
module, the best grasp pose is obtained through a series of processes. The best grasp pose is
that which can accurately grasp objects and avoid any contact with human fingers. After this
state is entered, HERoS inference is activated by receiving RGB-D messages from the D435
depth camera. The images Irgp and Ipey, are input to the HERoS network and are used to
predict the pixel-wise affordance map (4 fordance), to indicate the grasp value that is graspable
for each pixel, and to obtain the orientation by rotating the input eight times (because the largest
grasp area made by the prediction result is obtained only when the object is at a 90° angle to
the horizontal ground). Then, the affordance map with the largest grasp area is mapped to the
original RGB image by rotating the obtained angle of the object. The center of the largest area
in the 14 ¢ fordance 15 selected and combined with I, to obtain the grasp pose. The grasp pose
is obtained through the perspective of the camera. To drive the manipulator, the grasp pose
must be mapped to the manipulator coordinate system through a transform conversion (" P =
W X ¢ ¢ pFi) to drive the manipulator directly to the grasp pose (© X “Gresr). The aforementioned
process is a single-frame image processing procedure. To avoid interference from human hand
shaking and the effects of image noise, the final target pose (7 X “cresr) is obtained using five
consecutive frames; the position distance between each frame is less than 5 cm. Finally, the
mean in z, y, and z of the five frames is selected for the handover pose. Once chosen, the target

pose is unchanged until execute manipulator is completed.

(

S OXCaren(t) if distance between

T GG sp —
XTarase = frames < 5em

0 else

18



3.3.3 [Execute Manipulator

This module translates the output of predict grasp pose into joint and gripper actions by
using the Moveit[34] path planning node. This process is mainly based on the best grasp pose
generated by HERoS. When the manipulator VX300s reaches 5 cm in front of the target grasp
point, the velocity of the manipulator becomes é times the normal speed, and the manipulator
slowly approaches the target point. This reduction in speed protects humans during the handover
and ensures that the patient does not change the position of the original object or change the grasp
pose due to fear of being touched by the manipulator. After reaching the target point, the gripper
is closed and the robot detects whether the object has been grasped correctly by evaluating the
gripper position. If the robot determines that grasping has failed, the manipulator returns to the
ready pose and predict grasp pose is repeated. If the object is held tightly, the manipulator

returns to the home pose by changing to the on standby state.

3.4 Learning Grasp Choice using Deep RL

By using pixel-wise affordance prediction, we could predict the graspable area and could
use rule-based methods to grasp the object. However, people have different preferences when
interacting with a robot. We wanted our robot grasping to be optimized for users and to be com-
fortable to interact with. Thus, we modified the training process to include humans by using a
deep reinforcement learning (DRL) formulation. However, no simulator exists for the human—
robot hand-over task to bootstrap the DRL training. Additionally, directly training the DRL
agent from scratch in the real world to interact with humans is inefficient and could cause phys-
ical injury to human testers. Therefore, we used a collected human demonstration replay buffer
and an offline reinforcement learning algorithm to start training another affordance prediction

model.

3.4.1 Human Demonstration Replay Buffer

We collected an offline training replay buffer containing medical items and 9 additional

YCB [35] objects for a total of 13 objects and 1127 transitions. Transitions can be represented
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Figure 3.5: Grasp choice system architecture diagram. When the image is received, it will
control the manipulator from two different perspectives for prediction, selecting the perspective
with a larger Q-value to perform the grasping, and receives the reward through the human label
after the grasping is completed, so that the agent can learn human preferences.

as atuple {S;, S;11, as, 7, '} that indicate, from left to right, the initial state, end state (each state

features a pair comprising an RGB image and a depth image), action (position and orientation),

reward, and a flag indicating success or failure.

Collection

We used a D435 RGBD camera to collect RGB and depth images for different scenes and
light source angles. Objects were held in various postures and in either the left or right hand.
We held the objects at four angles (90°, 0°, —45°, 45°) to the horizontal ground, and the model
predicted an action based on these data. If transition was successful, each state was a pair of
images: one containing the held object and the other not containing the object. If transition fails,

the pair of images in the state both contain the held object.

Label

To generate the gripper action, we labeled a graspable line in the RGB images by first using

the Labelme[36] tool and subsequently marking the center position and orientation of the line as
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the grasping position and angle, respectively. We also labeled a True or False flag and a reward

of 5 or —5 depending on whether the transition was or was not a successful grasp.

3.4.2 Deep RL Value Prediction

We formulated the task as a standard Markov decision process (MDP) defined as M =
{S, A, R, P,~}. In our case, the state S was the RGB and depth image taken by the robot before

the start of grasping, the action A € R?24x221x4

was a discrete space mapping to the 224 x 224
grasping position and 4 different orientations of {—45°,0°,45° 90°} for the end effector, the
reward signal i was 5 for a success grasp and —5 if otherwise, P was the transition function to
the next state p(sy41|s;, a;), and, finally, v was a discount factor for future value estimation.
Basically, we need heatmap to select an action to execute, so we need a value based al-
gorithm. The chosen algorithm was Double Q-learning (DDQN)[38], which is an off-policy
learning algorithm that can work with our prestored experience replay buffer. This algorithm
solves the over estimation problem of DQN][39] through the greedy method. The algorithm was
designed to train a Q network with parameter 6 to predict the future value of each action by using
reward signals. DDQN leverages a separate target network with parameter 6 that gradually up-
dates from 6 to stabilize the training process. We also used a prioritized experience replay buffer

to increase efficiency by sampling important transitions to update the gradient. The objective of

the value network Q was to minimize the Bellman error:

Ry + 7@9'(5t+17 argm(?x Q0(3t+17 CL)) - Qe(St, at)-

Our Q network was based on previous affordance prediction networks; only one additional
convolution layer was used to output the Q-value. We also rotated the input images according
to every possible end effector orientation to obtain the Q-values for each action in the action
space. The full value map can be used as an affordance map to identify the best grasping point
and rotation. The training process was performed using an NVIDIA RTX 2070 GPU for 5000

steps and took 3 hours.
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Chapter 4

Experiment

4.1 System Overview

4.1.1 Hardware System

The medicine delivery robot system (Fig. 4.1) comprises four parts, each defined by its
function of perception, movement, grasping, or calculation. These parts enable the robot to
complete a series of medicine delivery tasks from the pharmacy to the ward.

Perception: Perception was realized using an Intel RealSense D435 RGB-D camera with
a resolution of 640 x 480 mounted on the end effector of the manipulator VX300s.

Movement: For the UGV, we used the small mobile platform Clearpath Jackal. The size
of the robot was 508 x 430 x 250 mm?, the maximum load was 20 kg, the maximum speed was
2 m/s, and the four-wheel differential drive can be used for more flexible travel in a multiperson
indoor environment.

Grasp: We mounted an Interbotix ViperX300s manipulator on the Jackal. The manipulator
had 6 DOFs and full rotation of 360°, a maximum reach of 750 mm, a maximum load of 750 g,
and a two-finger parallel gripper as its end effector.

Calculation: A mounted Intel NUC computer on the Jackal was used to control the VX300s
manipulator control and receive images from the D435 camera. The image information was
transmitted using ROS over the local area network to another workstation equipped with an
NVIDIA GTX 1080 GPU for prediction, and the prediction results were returned to the manip-

ulator.
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D435 Camera

Figure 4.1: Medicine Delivery Robot. Perception, movement, grasping, and calculation func-
tions were integrated on the Jackal, and it can shuttle between the ward and the pharmacy to
complete handover and medicine delivery tasks.
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4.1.2 Graphical User Interface

To facilitate user operation, we designed a graphical user interface as presented in Fig. 4.2.
The user can click on each action while related pictures are displayed on the screen. The user

interface can be used for manipulator control, gripper control, vehicle movement, and task exe-

cution selection.

Figure 4.2: Graphical User Interface. Images, from left to right, are of the original image, the
predicted brand name of the grasped medicine cup, the prediction result of the HERoS model,
and the prediction result of the Baseline II. Joint Reconstruction [2] (ObMan model). The but-
tons below are for the movement control, manipulator control, and trigger tasks.

4.2 Human-to-Robot Handover Experiment

In this section, we demonstrate the effectiveness of our approach with experiments. We
compare the concepts and effects of various human-to-robot handovers, including the methods
we propose. Further apply this method to practical application, complete the medicine delivery

robot system, and compare the effects of manual operation and learning-based approaches.

4.2.1 Experimental Setup

We used a mobile manipulator platform, and put the manipulator system in a fixed area, pro-
hibiting moving vehicles to increase the fairness of the experiment. Testers arbitrarily handed
over objects to the robot. During the experiment, we tested the following 5 approaches, conduct-
ing 20 trials for each object, and recorded the number of successes, and the reason for failures.

Baseline I. Hand [29] + Object Poses [30] (DOPE & MANQO): This approach represented

the intuitive method of handovers, which predicted the pose of the object and the human hand
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Figure 4.3: We performed 20 trials for each objects and classified the tasks with respect to
four orientations: vertical, horizontal, diagonally to the right, diagonally to the left (taking each
orientation of five trials in random poses); we did so to ensure fairness when the outputs of
various models were compared with the object taken by the personnel.
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separately, where the algorithm excluded the hand to grasp the target. The object pose prediction
component used the state-of-the-art DOPE model [30], and the hand prediction component used
the MANO model [29]. We combined the two and perform post-processing, and finally selecting
the grasp pose for the handover task. (Fig. 4.4)

Baseline II. Joint Reconstruction [2] (ObMan): As prediction of the object and hand
separately led to occlusion problems, we tried to use the ObMan [2] model to directly generate
the pose of the object and the hand through joint reconstruction in order to obtain their relative
positions. The reconstructed result was mapped to real-world coordinates by coherent point drift
methods [3], and the grasp pose was generated through the algorithm to complete the handover
task. (Fig. 4.5)

Baseline I1I. Modified GG-CNN [4, 5] (Rosenberger et al.): The approach described in
Chapter. 2.2 was similar to the goal we want to achieve. We used this method as the baseline
for this experiment and applied it to the D435 Camera and ViperX300s manipulator.

HERoS (Current approach): The proposed system called HERoS was described in Chap-
ter. 3, used RGB-D images to predict the position and orientation that can be grasped.

Teleoperation: In order to compare the success rate of the manual control and the au-
tonomously grasping methods, we reported the results using a joystick to control the manipulator
to complete this task.

The algorithm mentioned in the Dope & Mano and ObMan approaches, meets the following

conditions and Algorithm 4.1 in order to achieve the purpose of safety and accurate grasping:
* Distance: Within 10-70 cm from the manipulator.
* Protection: The finger joints are not accessible by the manipulator trajectory.

» Confidence: The grasp point of each frame must be less than 5 cm for 5 consecutive times.

All approaches use the same processes for recording and evaluation. During the experi-
mental handover task, we performed 20 trials for each object with four orientations: vertical,
horizontal, diagonally to the right, and diagonally to the left (Fig. 4.3). For each orientation, five
trials with random poses were performed. Because these approaches ought to achieve real-time

grasping, if the manipulator did not begin to perform the grasp action within 12 seconds after
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Algorithm 4.1 Dope & Mano / ObMan Grasp Selection Algorithm
Input:

Five grasp pose in continuous time, °X “(t);

Five hand joint points in continuous time, “X%(t);
Output:

Target pre-grasp pose, X ;

I: fort =0;t < 5,1+ + do

2. if 10 < the depth of °X%(t) < 70 and °X () N X (t) = () then
3 if t > 0and d(°X“(t),9X%(t — 1)) < 5 then
4 TXG = (IXC 4+ 9XC(1))/2

5: else if ¢ = 0 then

6 TXC = OXY(¢)

7 else

8 return None

9 end if
10:  else

11: return None
12:  endif
13: end for

14: return 1X€

the start of the experiment, the tester changed the posture of the object and continued to wait for
the prediction calculation. After the manipulator had performed the grasp action, whether the
grasp was a success or failure was recorded.

In the experiment, it is currently only applicable to Asian hands, without gloves. The back-
ground is not specially regulated, mainly based on the clothes worn in daily life and the space
of the laboratory. If we want to consider hands of different skin colors, we can increase the

diversity of dataset.

4.2.2 Evaluation Metrics

We used a set of indicators to evaluate the performance of the system and analyze it by
recording the number of successes, failures and their reasons.

Success: How often the robot was able to successfully take the object from the human’s
hand safely.

Planning Fail: The robot failed to predict the object in the human hand, resulting in an

inability to grasp the object but the human’s fingers were not touched.
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Figure 4.4: Baseline I. (DOPE & MANO). We used DOPE to predict the object pose and MANO
to obtain the hand pose. Then, the grasping algorithm 4.1 was used to generate a suitable grasp
pose and complete the handover task.
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Figure 4.5: Baseline II. (ObMan) approach. We used ObMan reconstruction to predict the ob-
ject and the human hand to avoid occlusion problems. Then, the coherent point drift method
[3] was used to project coordinates in the real world and the grasp algorithm, as described in
Algorithm 4.1, was used to generate a suitable grasp pose to complete the handover task.
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Touched Fingers: Regardless of whether an object is grasped or not, if the robot grasps
the human fingers, it will be considered a failure and recorded.

Hand Occlusion:

To ensure fairness of the comparison of various approaches and quantitative data analysis,
we captured the current frame of the grasp execution and human label to obtain the occlusion
relationship between the hand and the object. We categorized hand occlusion into either < 40%
or > 40% (Fig. 4.6).

, (object area N hand area)
occlusion =

object area

Occlusion: 48.8% Occlusion: 36.7%

Figure 4.6: Example capture of the current frame of the grasp execution for labelling hand/
object segmentation and estimating the occlusion ratio.

4.2.3 Results

Table 4.1: Individual object grasping results using YCB dataset in comparison with modifed
GG-CNNTJ4, 5] baseline. An object is carried out 20 trials, a total of 360 handovers

Hand Occlusion < 40% Avg.
Method \Object SPAM  Banana Lemon Strawberry Peach Pear Plum Mustard ~ Sugar Success Rate | o
Baseline III. Modified GG-CNN 80% 75% 75% 90% 70% 85% 80% 85% 80% 80% +5.77%
HERoS (Current approach) 95% 85% 80% 95% 90% 90% 90% 95% 80% 88.89% +4.82%

We first compared with Baseline III. (Rosenberger et al. [5]), which used a modified GG-
CNN for grasping. 9 YCB objects with < 40% occlusion were evaluated, and we replicated the
success rate reported in [5] using our manipulation platform. Our proposed affordance prediction

method achieved higher success rate, shown in Table. 4.1.
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Table 4.2: Comparison of the success rate of grasping four objects (400 handovers) across ap-
proaches.

Method \Hand Occlusion < 40% > 40% o

Baseline 1. Hand [29] + Object Poses [30] 61.6% 45% +9.01%
Baseline II. Joint Reconstruction [2] 75% 60.97% +9.01%
Baseline III. Modified GG-CNN [4, 5] 62.5% 50% +3.53%
HEROoS (Current approach) 93.87% 93.54% +5.44%
Teleop 95.55% 91.43% +6.49%

In a separate experiment, Table. 4.2 further showed the results of each of the main metrics
in our system evaluation process. We first reported that our hardware equipment is sufficient
to complete the handover task by teleoperation. The success rate of other three benchmark
methods (DOPE & MANO, ObMan, and Rosenberger et al. [S]) were found decreased due
to hand occlusions, but our method consistently outperformed the success rate, suggesting the
efficacy and reliability of our method to severe hand occlusion (> 40%).

The overall success rate of our method for all objects was 93.5%. It is noted that the success
rate in Baseline III decreased to 62.5%. This may be caused by the model for detecting ob-
jects uses a YOLO V3 object detector [18], which was prone to false positives with a complex
background and occlusion problems.

In the Baseline I. (DOPE & MANO) experiment, this method was used to predict the po-
sitions of the objects and fingers separately and then performed post-processing calculations.
Common problems were that the hand occludes the objects and results in pose estimation errors.
As the object cannot be detected if there was an occlusion, the DOPE model was only able to
successfully predict the pose of the object during the experiment when the fingers are placed on
the sides of the object.

Compared with the Baseline II. (ObMan) approach, the method of using hands and objects
for joint reconstruction deals with the problem of not being able to detect objects. However,
during post-processing, the reconstructed 3D-point cloud needs to be projected onto objects in
real world coordinates to obtain the grasp points, which often causes errors such as skew.

For HERoS, no fingers were touched. This means that we can effectively avoid touching
human fingers when handing over objects, and it also proves that the end-to-end method per-
forms better than reconstruction or separate predictions of the hands and objects. In addition to

solving the occlusion problem, it also reduces reaction time and improves stability.
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4.3 Complete System Experiment

For infectious diseases, hospital cluster infection is more dangerous than community cluster
infection. Therefore, isolation and medical care in the hospital are key issues. The purpose of
this experiment is to reduce the contact between medical staff and patients. Use the medicine
delivery robot to automatically shuttle between the wards. Therefore, we design a situation
where we can use the robot with handover to complete the medicine delivery task that interacts
with the patient. 1. Pick up a small medicine cup at the pharmacy. 2. Move to the side of the

sickbed. 3. Handover interaction with patients. 4. Recycle the medicine cup.

4.3.1 Experimental Setup

On the basis of human-to-robot technologies and approaches, this thesis proposes an end-
to-end medicine delivery robot system to reduce the risk of infection between medical staff
and patients; thus, this technology has practical applications. This experiment systematically
evaluated success rates and execution times using both manual teleoperation and a learning-
based approach. The medicine delivery robot system was divided into four parts, as presented
in Figure. 4.7; these parts were connected in series to achieve a complete medicine delivery task.
The experiment was performed over 10 trials in a simulated ward.

Grasp: The first part begins at the pharmacy. The text on a small medicine cup was
identified by using the Moran model [40]. If grasping of the medicine cup was achieved, this
part was considered successful.

Movement: After successfully grasping the medicine cup, the robot proceeds to the second
part of transporting the medicine cup from the pharmacy to the sickbed. This part includes
all of the robot platform mobile tasks, which were completed through ultrawideband (UWB)
localization and a prebuilt map combined with the A* path planning algorithm.

Handover: The robot hands the medicine cup to the patient. The approach of this thesis
was to grasp the medicine cup from the patient’s hand to achieve the human-to-robot handover

task.
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Placement: The vehicle returns to the pharmacy and accurately places the medicine cup in
a specific location by using the Apriltag2 system [41] to obtain a pose to complete this task.

During the operation of the system, RGB-D images can be transmitted over a wireless net-
work to perform calculations on a computer equipped with an NVIDIA GTX 1080 GPU. In the
experiment, a set of indicators was used to evaluate the performance of the system. We eval-
uated and analyzed the success rate of each part and the overall time and the success rate of

completing the entire task for each trial.

4.3.2 Results

The recorded times and success rates for various tasks demonstrated that the system is robust
and reliable.

Grasping a small medicine cup from the shelf was difficult because the gripping point was
very narrow. Even when joystick control was used, the cup was dropped often or collisions
occurred. The success rate was lower for the joystick than for learning-based method, indicating
that our hardware and software can be combined to achieve accurate control and outstanding
performance in the following handover tasks.

For the movement part, we used UWB for localization and planned a path using the A*
algorithm. However, when moving to the sickbed to perform handover, the robot must be moved
to a place within 75 cm of the human because the manipulator range is only 75 cm. If the human
is lying on a sickbed, slight deviations in the accuracy of the target point (of 10 or 20 cm) may
occur. These deviations may cause the failure of the handover task. After the medicine delivery
robot reaches its destination, the joystick was used to manually adjust the position of the robot
and ensure the fairness of the task. Thus, in the movement part, more effort is necessary to
achieve precise localization and reach the specified target point.

The handover task is the most cruicial for the system. A success rate of over than 80% was
achieved, and the handover was completed within 20 seconds. Thus, the handover method could
be used in various situations.

The placement task required the robot to find the pose for the placement point through April-

tag2 [41]. The robot placed the small medicine cup into a recycling box on the ground. The suc-
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cess rate was 100%. In future studies, the robot could be challenged to put the small medicine

cup on a recycling shelf.

Medical
Experiment

Figure 4.7: Upper left picture displays the Grasp action; the robot is grasping a small medicine
cup. The upper right picture displays the Movement action, in which the robot delivers medicine
cups. The lower right picture presents the Handover action, which is key focus of this thesis.
The lower left picture presents the Placement of the medicine cup to recycle the medicine cup
and complete the series of tasks.

Table 4.3: The success rate of each part of the complete system process.

Method/Task || Grasp | Movement | Handover | Placement | Success Rate | Average Time(s)

Teleoperation || 70% | 100% 100% 100% 70% 117.8
HERo0S 90% | 100% 80% 100% 72% 152.9

4.4 Grasp Choice Experiment

In the previous experiment in Chapter. 4.2, we showed that the target object can be success-

fully grasped, but some successful grasp may violate some grasp choice constraints (such as
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Figure 4.8: Medicine delivery robot system smach. The whole system will start from automatic
charging and go through the four main parts Grasp, Movement, Handover, Placement. If it fails
during execution, the action will be repeated until it succeeds. After the process is over, it will
automatically return to the wireless charging station.

social convention). In this experiment, we further used deep RL to learn the associations of raw
image inputs and grasp choice of human preferences. We set up our robot arm using the model
described in Chapter.3.4 and continuously updated the model through the guiding of rewards

given by users.

4.4.1 Experimental Setup

We designed fined two grasp types that were suitable for one of the two 6DoF grasp choices
(front and top views), as shown in Fig. 4.10. The robot arm moved to the initial positions of
the two grasp choices positions, and collected two input RGB-D images. The inputs were then
pre-processed with 4 planar rotations, resulting in 224 x 224 x 4 x 2 before feeding into the deep
model. The model predicted the Q-values of the outputed 2 x 4 6DoF affordance map, and the
best grasping choice and orientation were selected. It is often to have a successful grasp from
both grasp choices. However, we have set preferences for the robot to learn. We programmed the

model to learn that when the user was holding the bottom of object, the robot should approach
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from the top to stay away from the user’ s fingers. Noted that no human hand detector nor

human grasp classifier were used.

4.4.2 Training-stage

The deep RL model was trained while the robot interacted with human users, and a total
number of 100 handovers was carried out. During each handover the reward given by the user.
For every trial where the handover task was completed, it sampled from the prioritized reply
buffer for training. 6-10 points were given when the grasping pose matched the human pref-
erence, 1-5 points were given when the pose grasped the object but did not match the human

preference, and -5 points was given if the grasping fails or collision with a finger.

4.4.3 Results for Known and Novel Objects

We carried out a pre-test and a post-test to evaluate the grasp choice of the pre-trained DRL
model before and after the training with 100 handovers. We had 40 handovers interacting with
the robot arm, but without updating the weights. All trials usded known objects shown in the
training stage. As mentioned the model generated 4 orientations x 2 grasp choice, and the best
grasp position and orientation among the 8 affordance maps were selected. According to the
experimental results, we found that the overall success grasp achieve 82.5%, and the probability
for the preference was 47.5%.

The same procedure was performed for the model trained with deep RL. We tested 40 han-
dovers for known objects (shown in the training stage) and 20 handovers for novel objects,
which were not included in any of our training dataset HERoS. After obtaining rewards from
humans and training for 100 trials, the average probability of grasping using the human pref-
erence was 82.5%. This means that the model can be updated with human-preferred grasping
through learning to achieve a more preferred grasp choice, but a trade-off was found that the
success rate (based on predicted positions and orientations from the affordance map) slightly

decreased to 73.33%.
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Human-prefer
Human-prefer (uncomfortable)

Non-human-prefer

Figure 4.9: The trajectory of the manipulator during the handover task. The green line is the
human-prefer trajectory, the red line is the human-prefer but not comfortable trajectory, and the
blue line is the non-human-prefer trajectory.
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Figure 4.10: There are Grasp Type I and Grasp Type II preferences for picking objects. Grasp
Type I is picking the middle of objects, and Grasp Type II is picking the top of objects, using

different perspectives to predict objects, and finally selecting the grasping perspective preferred
by humans.



Chapter 5

Conclusion

Human-to-robot handover has many challenges. Considering the issues of complex back-
grounds, occlusion and trajectory, we presented an end-to-end approach for handover. We fil-
tered out depth noise to increase the robustness of the model. Without using separate predictions
of the hands and objects, we used RGB-D images as input to generate affordance maps for se-
lecting the grasp point, thus solving the occlusion problem. Then we used deep reinforcement
learning to train our prediction model. After each grasping trial, the user gives a point reward,
allowing the robot to learn the grasp choice preferred by humans. In addition, we also proposed
a medicine delivery machine system that integrates ground vehicles and a manipulator to enable
it to move around the hospital and complete the medicine delivery task.

In the future, we believe the same approach could also be applied to many applications
of human-robot collaboration. In future work, we will 1) use off-line RL training to jointly
train affordance map with preference, and 2) use end-to-end methods to modify the deep RL
network architecture and generate a close-loop 6D pose using RGB images, which can make

the manipulator trajectory more legible and friendly.
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